By Topic

Application of Two Hopfield Neural Networks for Automatic Four-Element LED Inspection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chuan-Yu Chang ; Dept. of Comput. & Commun. Eng., Nat. Yunlin Univ. of Sci. & Technol., Douliou ; Chun-Hsi Li ; Si-Yan Lin ; MuDer Jeng

A system for the automatic inspection of LED wafer defects is proposed to detect defective dies in a four-element (aluminum gallium indium phosphide, AlGaInP) wafer. There are over 80000 dies on an LED wafer. Defective dies are typically visually identified with the aid of a scanning electron microscope. This process involves dozens of operators or engineers visually checking the wafers and hand marking the defective dies. However, wafers may not be fully and thoughtfully checked, and different observers usually find different results. These shortcomings lead to significant labor and production costs. Therefore, a solution that consists of two Hopfield neural networks, of which one is used to identify the LED die regions and the other is used to cluster the die into three groups, is proposed to facilitate the detection of defective dies in wafer images. The experimental results show that the proposed method successfully detects defective dies in a four-element wafer.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:39 ,  Issue: 3 )