Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Data Imputation Using Least Squares Support Vector Machines in Urban Arterial Streets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Zhang ; Res. Center of ITS, Shanghai Jiao Tong Univ., Shanghai ; Yuncai Liu

Some traffic data from loop detectors settled in urban arterial streets are incomplete. The importance of effectively imputing the missing values emerges. The letter introduces least squares support vector machines (LS-SVMs) to missing traffic flow prediction based on spatio-temporal analysis. It is the first time to apply the technique to missing data imputation. A baseline imputation technique, expectation maximization/data augmentation (EM/DA), is selected for comparison because of its proved effectiveness. Experimental results demonstrate that our method is more applicable and performs better at relatively high missing data rates. This reveals that it is a promising approach in the field.

Published in:

Signal Processing Letters, IEEE  (Volume:16 ,  Issue: 5 )