By Topic

The Effect of Target Vector Selection on the Invariance of Classifier Performance Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eric Sakk ; Dept. of Comput. Sci., Morgan State Univ., Baltimore, MD ; David J. Schneider ; Christopher R. Myers ; Samuel W. Cartinhour

In this paper, the multiclass supervised training problem is considered when a discrete set of classes is assumed. Upon generating affine models for finite data sets, we have observed the invariance of certain measures of performance after a trained classifier has been presented with test data of unknown classification. Specifically, after constructing mappings between training vectors and their desired targets, the class membership and ranking of test data has been found to remain either invariant or close to invariant under a transformation of the set of target vectors. Therefore, we derive conditions explaining how this type of invariance can arise when the multiclass problem is phrased in the context of linear networks. A bioinformatics example is then presented in order to demonstrate various principles outlined in this work.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 5 )