By Topic

Nonlinear Spatial Filtering of Multichannel Surface Electromyogram Signals During Low Force Contractions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ping Zhou ; Sensory Motor Performance Program (SMPP), Northwestern Univ., Chicago, IL ; Suresh, N.L. ; Lowery, M.M. ; Rymer, W.Z.

This study introduces the application of nonlinear spatial filters to help identify single motor unit discharge from multiple channel surface electromyogram (EMG) signals during low force contractions. The nonlinear spatial filters simultaneously take into account the instantaneous amplitude and frequency information of a signal. This property was used to enhance motor unit action potentials (MUAPs) in the surface EMG record. The advantages of nonlinear spatial filtering for surface MUAP enhancement were investigated using both simulation and experimental approaches. The simulation results indicate that when compared with various linear spatial filters, nonlinear spatial filtering achieved higher SNR and higher kurtosis of the surface EMG distribution. Over a broad range of SNR and kurtosis levels for the input signal, nonlinear spatial filters achieved at least 32 times greater SNR and 11% higher kurtosis for correlated noise, and at least 15 times greater SNR and 1.7 times higher kurtosis for independent noise, across electrode array channels. The improvements offered by nonlinear spatial filters were further documented by applying them to experimental surface EMG array recordings. Compared with linear spatial filters, nonlinear spatial filters achieved at least nine times greater SNR and 25% higher kurtosis. It follows that nonlinear spatial filters represent a potentially useful supplement to linear spatial filters for detection of motor unit activity in surface EMG at low force contractions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 7 )