By Topic

Fast tree-structured nearest neighbor encoding for vector quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Katsavounidis, I. ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Kuo, C.-C.J. ; Zhen Zhang

This work examines the nearest neighbor encoding problem with an unstructured codebook of arbitrary size and vector dimension. We propose a new tree-structured nearest neighbor encoding method that significantly reduces the complexity of the full-search method without any performance degradation in terms of distortion. Our method consists of efficient algorithms for constructing a binary tree for the codebook and nearest neighbor encoding by using this tree. Numerical experiments are given to demonstrate the performance of the proposed method

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 2 )