By Topic

Entropy-constrained tree-structured vector quantizer design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Rose ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; D. Miller ; A. Gersho

Current methods for the design of pruned or unbalanced tree-structured vector quantizers such as the generalized Breiman-Friedman-Olshen-Stone (GBFOS) algorithm proposed in 1980 are effective, but suffer from several shortcomings. We identify and clarify issues of suboptimality including greedy growing, the suboptimal encoding rule, and the need for time sharing between quantizers to achieve arbitrary rates. We then present the leaf-optimal tree design (LOTD) method which, with a modest increase in design complexity, alters and reoptimizes tree structures obtained from conventional procedures. There are two main advantages over existing methods. First, the optimal entropy-constrained nearest-neighbor rule is used for encoding at the leaves; second, explicit quantizer solutions are obtained at all rates without recourse to time sharing. We show that performance improvement is theoretically guaranteed. Simulation results for image coding demonstrate that close to 1 dB reduction of distortion for a given rate can be achieved by this technique relative to the GBFOS method

Published in:

IEEE Transactions on Image Processing  (Volume:5 ,  Issue: 2 )