By Topic

Adaptive edge-based side-match finite-state classified vector quantization with quadtree map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruey-Feng Chang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Wei-Ming Chen

Vector quantization (VQ) is an effective image coding technique at low bit rate. The side-match finite-state vector quantizer (SMVQ) exploits the correlations between neighboring blocks (vectors) to avoid large gray level transition across block boundaries. A new adaptive edge-based side-match finite-state classified vector quantizer (classified FSVQ) with a quadtree map has been proposed. In classified FSVQ, blocks are arranged into two main classes, edge blocks and nonedge blocks, to avoid selecting a wrong state codebook for an input block. In order to improve the image quality, edge vectors are reclassified into 16 classes. Each class uses a master codebook that is different from the codebooks of other classes. In our experiments, results are given and comparisons are made between the new scheme and ordinary SMVQ and VQ coding techniques. As is shown, the improvement over ordinary SMVQ is up to 1.16 dB at nearly the same bit rate, moreover, the improvement over ordinary VQ can be up to 2.08 dB at the same bit rate for the image, Lena. Further, block boundaries and edge degradation are less visible because of the edge-vector classification. Hence, the perceptual image quality of classified FSVQ is better than that of ordinary SMVQ

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 2 )