By Topic

Advances in residual vector quantization: a review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barnes, C.F. ; Georgia Tech. Res. Inst., Georgia Inst. of Technol., Atlanta, GA, USA ; Rizvi, S.A. ; Nasrabadi, N.M.

Advances in residual vector quantization (RVQ) are surveyed. Definitions of joint encoder optimality and joint decoder optimality are discussed. Design techniques for RVQs with large numbers of stages and generally different encoder and decoder codebooks are elaborated and extended. Fixed-rate RVQs, and variable-rate RVQs that employ entropy coding are examined. Predictive and finite state RVQs designed and integrated into neural-network based source coding structures are revisited. Successive approximation RVQs that achieve embedded and refinable coding are reviewed. A new type of successive approximation RVQ that varies the instantaneous block rate by using different numbers of stages on different blocks is introduced and applied to image waveforms, and a scalar version of the new residual quantizer is applied to image subbands in an embedded wavelet transform coding system

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 2 )