Cart (Loading....) | Create Account
Close category search window

Robust H_{\infty } Filtering for Time-Delay Systems With Probabilistic Sensor Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao He ; Dept. of Autom., Tsinghua Univ., Beijing ; Zidong Wang ; Donghua Zhou

In this paper, a new robust H infin filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval [alpha,beta], which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H infin filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H infin performance level. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology.

Published in:

Signal Processing Letters, IEEE  (Volume:16 ,  Issue: 5 )

Date of Publication:

May 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.