By Topic

A Hybrid Geometric–Statistical Deformable Model for Automated 3-D Segmentation in Brain MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Albert Huang* ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; Rafeef Abugharbieh ; Roger Tam ; Alzheimer's Disease Neuroimaging Initiative

We present a novel 3-D deformable model-based approach for accurate, robust, and automated tissue segmentation of brain MRI data of single as well as multiple magnetic resonance sequences. The main contribution of this study is that we employ an edge-based geodesic active contour for the segmentation task by integrating both image edge geometry and voxel statistical homogeneity into a novel hybrid geometric-statistical feature to regularize contour convergence and extract complex anatomical structures. We validate the accuracy of the segmentation results on simulated brain MRI scans of both single T1-weighted and multiple T1/T2/PD-weighted sequences. We also demonstrate the robustness of the proposed method when applied to clinical brain MRI scans. When compared to a current state-of-the-art region-based level-set segmentation formulation, our white matter and gray matter segmentation resulted in significantly higher accuracy levels with a mean improvement in Dice similarity indexes of 8.55% (p<0.0001) and 10.18% (p<0.0001), respectively.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:56 ,  Issue: 7 )