By Topic

A Neuro-Sliding-Mode Control With Adaptive Modeling of Uncertainty for Control of Movement in Paralyzed Limbs Using Functional Electrical Stimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arash Ajoudani ; Dept. of Biomed. Eng., Iran Univ. of Sci. & Technol. (IUST), Tehran ; Abbas Erfanian*

During the past several years, several strategies have been proposed for control of joint movement in paraplegic subjects using functional electrical stimulation (FES), but developing a control strategy that provides satisfactory tracking performance, to be robust against time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, muscle fatigue, and external disturbances, and to be easy to apply without any re-identification of plant dynamics during different experiment sessions is still an open problem. In this paper, we propose a novel control methodology that is based on synergistic combination of neural networks with sliding-mode control (SMC) for controlling FES. The main advantage of SMC derives from the property of robustness to system uncertainties and external disturbances. However, the main drawback of the standard sliding modes is mostly related to the so-called chattering caused by the high-frequency control switching. To eliminate the chattering, we couple two neural networks with online learning without any offline training into the SMC. A recurrent neural network is used to model the uncertainties and provide an auxiliary equivalent control to keep the uncertainties to low values, and consequently, to use an SMC with lower switching gain. The second neural network consists of a single neuron and is used as an auxiliary controller. The control law will be switched from the SMC to neural control, when the state trajectory of system enters in some boundary layer around the sliding surface. Extensive simulations and experiments on healthy and paraplegic subjects are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed neuroadaptive SMC. The results show that the neuro-SMC provides accurate tracking control with fast convergence for different reference trajectories and could generate control signals to compensate the muscle fatigue and reject the external disturbance.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:56 ,  Issue: 7 )