By Topic

A Narrow-Linewidth, Yb Fiber-Amplifier-Based Upper Atmospheric Doppler Temperature Lidar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chad G. Carlson ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL ; Peter D. Dragic ; R. Kirk Price ; J. J. Coleman
more authors

A compelling use for high-power, narrow-linewidth fiber lasers and amplifiers is atmospheric Doppler lidars. Such systems require high power, good beam quality, a broad tuning range, and ruggedness. In this paper, we present a ground-based diode-seeded, high-power, narrow-linewidth Yb fiber-amplifier-based Doppler temperature lidar operating at 1083 nm for measuring temperature and density of the neutral atmosphere from 300 to 1000 km. Principles of Doppler resonance fluorescence lidar will be introduced. The current state of the fiber-based lidar system will be addressed, as well as ongoing work to increase SNR through power scaling and improvement of spatial resolution and wind measurement capability via pulsed operation.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:15 ,  Issue: 2 )