By Topic

An Optimization Approach to Single-Bit Quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
RaviKiran Gopalan ; Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA ; Oliver M. Collins

This paper presents an optimization approach to single-bit quantization. The paper starts by redefining single-bit quantization as a maximum-likelihood sequence detection problem and by showing that the Viterbi algorithm is its optimal solution. It also shows that the conventional ???? converter implements a greedy solution to the same optimization problem. There is, moreover, a continuum of solutions with different degrees of complexity between the ????s and the Viterbi solution. The paper details one such intermediate-complexity solution (based on the M-algorithm) and demonstrates that with an appropriate noise shaping filter it achieves a performance very close to the optimal Viterbi solution. The paper concludes by presenting two procedures for designing effective noise shaping filters.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:56 ,  Issue: 12 )