By Topic

Tunable Scanning Fiber Optic MEMS-Probe for Endoscopic Optical Coherence Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aljasem, K. ; Dept. of Microsyst. Eng., Univ. of Freiburg, Freiburg ; Seifert, A. ; Zappe, H.

A novel 3D probe for endoscopic optical coherence tomography (OCT) based on tunable and movable MEMS components is presented. A tunable micro-lens and a 2D scanning micro-mirror are integrated into a probe to enable two-dimensional movement with simultaneous dynamic focusing of a beam onto a target. The tunable system is based on a pneumatically actuated micro-lens for the axial movement of the focus position concomitantly with the depth scan of the OCT, whereas an electrostatically actuated micro-mirror is integrated to obtain the 2D lateral scan of the beam. High resolution imaging at high scan rates is expected for the entire scan depth using this concept. Probe design, assembly, and integration into an OCT system are discussed.

Published in:

Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on

Date of Conference:

25-29 Jan. 2009