Cart (Loading....) | Create Account
Close category search window
 

StarJet: Pneumatic Dispensing of Nano- to Picoliter Droplets of Liquid Metal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Metz, T. ; HSG-IMIT, Villingen-Schwenningen ; Birkle, G. ; Zengerle, R. ; Koltay, P.

In this work we present a novel, simple and robust, pneumatically actuated dispenser for nano- to picoliter sized droplets of liquid metals. The so called StarJet dispenser utilizes a star-shaped nozzle geometry that stabilizes plugs of liquid in the centre of the nozzle by capillary force. This minimizes the wall contact of the liquid plug and reduces contact line friction. Individual droplets of liquid metal can be pneumatically generated by interplay of the sheathing gas flow in the outer grooves of the nozzle and the liquid metal. The working principle was first discovered and studied by computational fluid dynamic (CFD) simulations. For experimental validation silicon chips with the star-shaped geometry were fabricated by deep reactive ion etching (DRIE) and assembled into a printhead. With different nozzle chips volumes between 120 pl and 3.6 nl could be generated at natural frequencies of 90 Hz and 400 Hz. The StarJet can either be operated as drop on demand or as continuous droplet dispenser. We printed columns of metal with 0,5 to 1,0 mm width and 40 mm height (aspect ratio >40) to demonstrate the directional stability of the ejection.

Published in:

Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on

Date of Conference:

25-29 Jan. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.