By Topic

Microchannels with Substantial Friction Reduction at Large Pressure and Large Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carlborg, C.F. ; Microsyst. Technol. Lab., KTH - R. Inst. of Technol., Stockholm ; Stemme, G. ; van der Wijngaart, W.

This paper introduces and experimentally verifies a self-regulating method for reducing the friction losses in large microchannels at high liquid pressures and large liquid flows, overcoming limitations with regard to sustainable liquid pressure on a superhydrophobic surface. Our design of the superhydrophobic channel creates an automatic adjustment of the gas pressure in the lubricating air layer to the local liquid pressure in the channel. This is achieved by pneumatically connecting the liquid in the microchannel to the air pockets trapped at channel wall trough a pressure feedback channel. When liquid enters the feedback channel it compresses the air and increases the pressure in the air pocket. This reduces the pressure drop over the air-liquid interface and increases the maximum sustainable liquid pressure. We define a dimensionless fluidic number, WF = PLDhthetasc, which expresses the fluidic energy carrying capacity of a superhydrophobic microchannel. We experimentally verified that our geometry can sustain several times higher liquid pressure before collapsing, and we measured better friction reducing properties at higher WF values than in previous works. This method could be applicable for reducing near-wall laminar friction in both micro- and macroscale flows.

Published in:

Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on

Date of Conference:

25-29 Jan. 2009