By Topic

Laser Communication Between Mobile Platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sofka, J. ; Dept. of Electr. & Comput. Eng., SUNY Binghamton, Binghamton, NY ; Nikulin, V.V. ; Skormin, V.A. ; Hughes, D.H.
more authors

Practical laser communication is impeded by the inherent strict requirements on agile and accurate steering of the laser beam over a wide angular range that are addressed by the pointing, acquisition, and tracking (PAT) system. While the vehicle carrying the optical instrumentation is in motion, a PAT system is required to compensate for the vibrations applied to the optical platform through the proper application of advanced control laws. This paper presents a feedforward vibration rejection system interacting with an optical tracking system to successfully perform the PAT task. It features a set of inertial navigation sensors to monitor the optical platform orientation, and the optical tracker monitoring the optical alignment errors. The control effort is defined on the basis of both signals and upon amplification drives the actuators of a novel singularity-free full-hemisphere-range robotic manipulator supporting the optical platform. The resultant technology enables two ground vehicles navigating through a difficult terrain to maintain optical connectivity sufficient for reliable laser communication. The paper presents the development of an extended Kalman filter "fusing" the inertial navigation sensor data, the design and implementation of the disturbance rejection/optical tracking control system, and the results of the experimental evaluation of the overall system performance.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:45 ,  Issue: 1 )