By Topic

CRB: Sinusoid-Sources' Estimation using Collocated Dipoles/Loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This work derives new asymptotic Cramer-Rao lower bounds (CRB) for the estimation of multiple pure-tone incident signals' azimuth-elevation arrival-angles, polarization parameters, frequencies, amplitudes, and temporal phases-based on data collected by spatially collocated but orthogonally oriented dipoles and/or loops. The incident sources are pure-tones at distinct, deterministic but unknown frequencies, in contrast to the case of all incident sources at one common known frequency, as has been investigated in the existing research literature on the CRB for diversely-polarized direction-finding. The derived CRBs are closed-form expressions, explicitly in terms of the signal parameters. The new CRBs presented here reveal how a constituent dipole and/or loop's presence and orientation may affect estimation precision, thereby offering guidelines to the system engineer on what dipole(s) and/or loop(s) to include or to omit in constructing the electromagnetic vector-sensor.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:45 ,  Issue: 1 )