By Topic

Determination of Spacecraft Landing Footprint for Safe Planetary Landing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ploen, S.R. ; NASA-Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA ; Seraji, H. ; Kinney, C.E.

A methodology is developed based on a ballistic analysis to estimate the landing footprint associated with the powered terminal descent phase of a spacecraft soft landing. The analysis is based on an idealized two-impulse thrust maneuver and leads to an analytical expression for the elliptical boundary of the landing footprint. The objective is to develop a computationally efficient method to estimate the landing footprint for use in an on-board fuzzy-logic based inference engine for real-time hazard avoidance. The inference engine combines an estimate of the landing footprint with information about the safeness of the landing terrain to construct an overall landing site quality index. The landing site quality index is a critical parameter that enables the spacecraft to make intelligent real-time decisions about landing safely on unknown and hazardous terrains. The footprint generated from the ballistic analysis is also compared with the footprint resulting from numerically integrating a representative guidance law.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:45 ,  Issue: 1 )