Cart (Loading....) | Create Account
Close category search window
 

Novel Co-Design of NAND Flash Memory and NAND Flash Controller Circuits for Sub-30 nm Low-Power High-Speed Solid-State Drives (SSD)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Takeuchi, K. ; Dept. of Electr. Eng. & Inf. Syst., Univ. of Tokyo, Tokyo

As the cell size of the NAND flash memory has been scaled down by 40%-50% per year and the memory capacity has been doubling every year, a solid-state drive (SSD) that uses NAND as mass storage for personal computers and enterprise servers is attracting much attention. To realize a low-power high-speed SSD, the co-design of NAND flash memory and NAND controller circuits is essential. In this paper, three new circuit technologies, the selective bit-line precharge scheme, the advanced source-line program, and the intelligent interleaving, are proposed. In the selective bit-line precharge scheme, an unnecessary bit-line precharge is removed during the verify-read and consequently the current consumption decreases by 23%. In the advanced source-line program scheme, a hierarchical source-line structure is adopted. The load capacitance during the program pulse is reduced by 90% without a die size overhead. As a result, the current consumption is reduced by 48%. Finally, with the intelligent interleaving, a current peak is suppressed and a high-speed parallel write operation of the NAND flash memories is achieved. By using these three technologies, both the NAND flash memory and the NAND controller circuits are best optimized. At the sub-30 nm generation, the current consumption of the NAND flash memory decreases by 60% and the SSD speed improves by 150% without a cost penalty or circuit noise.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 4 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.