By Topic

Process, Temperature, and Supply-Noise Tolerant 45 ~ nm Dense Cache Arrays With Diffusion-Notch-Free (DNF) 6T SRAM Cells and Dynamic Multi-Vcc Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)

This paper addresses the stability problem of diffusion-notch-free (DNF) SRAM cells used in dense last level caches (LLC). A DNF cell eliminates lithographic induced variations due to nMOS diffusion notches used in conventional 6T SRAM cells. However, it also results in reduced overall cell stability. We describe a new WL under-drive (WLUD) circuit that enables a read stable DNF cell with all minimally sized devices (called M-cell). The proposed WLUD circuit is both PT and supply noise tolerant. Write stability is maintained at low voltage thanks to a VCC dynamic voltage collapse (DVC) scheme that trades large dynamic cell retention margin for improving write stability. Another DNF cell, called P-cell, with pMOS pass device and charged high bit-lines is also presented. This cell is inherently read ratio-ed and extra read margin can be obtained through upsizing the nMOS PD without creating a notch as in conventional cell. A VSS DVC circuit is used along the P-cell to recover write stability. Two SRAM macros in 45 nm were fabricated to experiment with the proposed schemes. Both simulation and measurement results confirm that ~20% WLUD along with proper VCC DVC enables a stable M-cell across a wide voltage range. A low voltage operating window for the P-cell also exists by appropriately selecting pMOS strength, nMOS pull-down size, and VSS DVC.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 4 )