By Topic

Quantitative Analysis of a Common Audio Similarity Measure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

For music information retrieval tasks, a nearest neighbor classifier using the Kullback-Leibler divergence between Gaussian mixture models of songs' melfrequency cepstral coefficients is commonly used to match songs by timbre. In this paper, we analyze this distance measure analytically and experimentally by the use of synthesized MIDI files, and we find that it is highly sensitive to different instrument realizations. Despite the lack of theoretical foundation, it handles the multipitch case quite well when all pitches originate from the same instrument, but it has some weaknesses when different instruments play simultaneously. As a proof of concept, we demonstrate that a source separation frontend can improve performance. Furthermore, we have evaluated the robustness to changes in key, sample rate, and bitrate.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 4 )