By Topic

Foreground-Adaptive Background Subtraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Mike McHugh ; Dept. of Electr. & Comput. Eng., Boston Univ., Boston, MA ; Janusz Konrad ; Venkatesh Saligrama ; Pierre-Marc Jodoin

Background subtraction is a powerful mechanism for detecting change in a sequence of images that finds many applications. The most successful background subtraction methods apply probabilistic models to background intensities evolving in time; nonparametric and mixture-of-Gaussians models are but two examples. The main difficulty in designing a robust background subtraction algorithm is the selection of a detection threshold. In this paper, we adapt this threshold to varying video statistics by means of two statistical models. In addition to a nonparametric background model, we introduce a foreground model based on small spatial neighborhood to improve discrimination sensitivity. We also apply a Markov model to change labels to improve spatial coherence of the detections. The proposed methodology is applicable to other background models as well.

Published in:

IEEE Signal Processing Letters  (Volume:16 ,  Issue: 5 )