By Topic

Impact of Nonlinear Memory Effects on Digital Communications in a Klystron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Calame, J.P. ; Naval Res. Lab., Washington, DC ; Levush, B.

Nonlinear memory effects in a klystron and their impact on digital communications are investigated using a time-domain physics-based model. The simulation results are compared to an idealized block model based on the frequency response and amplitude/phase drive curves typically used in system design with vacuum electronic amplifiers. Significant departures in transient behavior are noted in the physics-based model in comparison to the block model when the klystron is at or near saturation, provided that the signal bandwidth is simultaneously large ( ges ~65% of the klystron output cavity bandwidth). Such nonlinear memory effects exist for pure amplitude, pure phase, and mixed transients of both the step and ramp variety. The effects of these nonlinear phenomena on 16-state phase-shift keying (16-PSK) digital communications waveforms (with preequalized symbols) are examined using symbol constellation diagrams and symbol error rate (SER) plots. Operation at saturation with signal bandwidths of 32%, 65%, and 93% of the klystron output cavity bandwidth, for a bit-energy-based signal-to-noise ratio of 18 dB, yields SER values of 2.0 times 10-5, 2.3 times 10-4, and 2.7 times 10-3 , respectively, in comparison to the ideal 16-PSK value of 1.1 times 10-5.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 5 )