By Topic

Set-Theoretic Estimation of Hybrid System Configurations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Benazera, E. ; LAAS-Centre Nat. de Rech. Sci. (CNRS), Univ. de Toulouse, Toulouse ; Trave-Massuyes, L.

Hybrid systems serve as a powerful modeling paradigm for representing complex continuous controlled systems that exhibit discrete switches in their dynamics. The system and the models of the system are nondeterministic due to operation in uncertain environment. Bayesian belief update approaches to stochastic hybrid system state estimation face a blow up in the number of state estimates. Therefore, most popular techniques try to maintain an approximation of the true belief state by either sampling or maintaining a limited number of trajectories. These limitations can be avoided by using bounded intervals to represent the state uncertainty. This alternative leads to splitting the continuous state space into a finite set of possibly overlapping geometrical regions that together with the system modes form configurations of the hybrid system. As a consequence, the true system state can be captured by a finite number of hybrid configurations. A set of dedicated algorithms that can efficiently compute these configurations is detailed. Results are presented on two systems of the hybrid system literature.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 5 )