By Topic

Some Characterizations of Global Exponential Stability of a Generic Class of Continuous-Time Recurrent Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lisheng Wang ; Dept. of Autom., Shanghai Jiao Tong Univ., Shanghai ; Rui Zhang ; Zongben Xu ; Jigen Peng

This paper reveals two important characterizations of global exponential stability (GES) of a generic class of continuous-time recurrent neural networks. First, we show that GES of the neural networks can be fully characterized by global asymptotic stability (GAS) of the networks plus the condition that the maximum abscissa of spectral set of Jacobian matrix of the neural networks at the unique equilibrium point is less than zero. This result provides a very useful and direct way to distinguish GES from GAS for the neural networks. Second, we show that when the neural networks have small state feedback coefficients, the supremum of exponential convergence rates (ECRs) of trajectories of the neural networks is exactly equal to the absolute value of the maximum abscissa of spectral set of Jacobian matrix of the neural networks at the unique equilibrium point. Here, the supremum of ECRs indicates the potentially fastest speed of trajectory convergence. The obtained results are helpful in understanding the essence of GES and clarifying the difference between GES and GAS of the continuous-time recurrent neural networks.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 3 )