By Topic

Bayesian Separation of Images Modeled With MRFs Using MCMC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We investigate the source separation problem of random fields within a Bayesian framework. The Bayesian formulation enables the incorporation of prior image models in the estimation of sources. Due to the intractability of the analytical solution, we resort to numerical methods for the joint maximization of the a posteriori distribution of the unknown variables and parameters. We construct the prior densities of pixels using Markov random fields based on a statistical model of the gradient image, and we use a fully Bayesian method with modified-Gibbs sampling. We contrast our work to approximate Bayesian solutions such as iterated conditional modes (ICM) and to non-Bayesian solutions of ICA variety. The performance of the method is tested on synthetic mixtures of texture images and astrophysical images under various noise scenarios. The proposed method is shown to outperform significantly both its approximate Bayesian and non-Bayesian competitors.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 5 )