By Topic

Distributed Visual-Target-Surveillance System in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xue Wang ; Dept. of Precision Instrum. & Mechanology, Tsinghua Univ., Beijing ; Sheng Wang ; Daowei Bi

A wireless sensor network (WSN) is a powerful unattended distributed measurement system, which is widely used in target surveillance because of its outstanding performance in distributed sensing and signal processing. This paper introduces a multiview visual-target-surveillance system in WSN, which can autonomously implement target classification and tracking with collaborative online learning and localization. The proposed system is a hybrid system of single-node and multinode fusion. It is constructed on a peer-to-peer (P2P)-based computing paradigm and consists of some simple but feasible methods for target detection and feature extraction. Importantly, a support-vector-machine-based semisupervised learning method is used to achieve online classifier learning with only unlabeled samples. To reduce the energy consumption and increase the accuracy, a novel progressive data-fusion paradigm is proposed for online learning and localization, where a feasible routing method is adopted to implement information transmission with the tradeoff between performance and cost. Experiment results verify that the proposed surveillance system is an effective, energy-efficient, and robust system for real-world application. Furthermore, the P2P-based progressive data-fusion paradigm can improve the energy efficiency and robustness of target surveillance.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 5 )