By Topic

Optimal active suspension design via convex analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Camino, J.F. ; University of Campinas - UNICAMP, Brazil ; Zampieri, D.E. ; Takahashi, R.H.C. ; Peres, P.L.D.

In this note the design of active suspension control is approached in a Youla parametrization setting, leading to dynamic output feedback controllers calculated by convex optimization. The controllers so designed have the following advantages over the usual ones: (i) they do not require the availability of the full states vector; (ii) the optimization problem may be cast in a true multiobjective fashion; (iii) the method reveals the limits of performance of the physical system under the given costs and constraints. An example is provided in a two-degree-of-freedom quarter-car model with H, optimization criterion.

Published in:

Control Applications, 1997., Proceedings of the 1997 IEEE International Conference on

Date of Conference:

5-7 Oct. 1997