By Topic

A mathematical model for mapping EMG signal to joint torque for the human elbow joint using nonlinear regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ullah, K. ; Dept. of Electron. & Commun. Eng., Myongji Univ., Yongin ; Jung-Hoon Kim

Numerous researchers have investigated the relationship between EMG and joint torque. Most of these studies use some conventional filtering (i.e. rectification followed by low pass filtering) to estimate the electromyogram (EMG) amplitude and then relate it to the joint torque. Currently some advanced pre-processing techniques (i.e. signal whitening) are also used to estimate the EMG amplitude and then relate it to joint torque. In this study we apply some pre-processing techniques like DC offset removal, noise filtering followed by rectification and then we calculate the moving average of the EMG signal. Thus we get a linear envelope (muscle activation) of the EMG signal and use that linear envelope to estimate the joint torque. To map the EMG to joint torque we propose a new mathematical model. This model has some unknown adjustable parameters, and the values of these parameters are obtained using nonlinear regression. Five subjects took part in the experiments. They were asked to perform non-fatiguing and variable force maximal voluntary contractions (MVC) and submaximal voluntary contractions (SMVC), and the resulting elbow joint torque and EMG signals were recorded. This recorded data was entered to the model, to estimate best fit values for the unknown parameters. Once these values of the parameters were obtained they were put into the model and thus joint torque was estimated. Predictions made by our model are well correlated with experimental data in both MVC and SMVC, the correlation coefficient and mean square error obtained for experimental data during MVC are 0.998 and 0.056 Nm respectively. The results of this new model were compared with other existing models and some new models and it was found that our model has greater correlation and least mean square error with experimental data. This model may be helpful in the control systems for recognition systems, robot manipulators, exoskeletons, EMG prosthesis and electric stimulators.

Published in:

Autonomous Robots and Agents, 2009. ICARA 2009. 4th International Conference on

Date of Conference:

10-12 Feb. 2009