By Topic

Fast Calibration of Haptic Texture Synthesis Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gianni Campion ; McGill University, Montreal ; Vincent Hayward

Calibrating displays can be a time-consuming process. We describe a fast technique for adjusting the subjective experience of roughness produced by different haptic texture synthesis algorithms. Its efficiency is due to the exponential convergence of the ldquomodified binary search methodrdquo (mobs) applied to find points of subjective equivalence between virtual haptic textures synthesized by different algorithms. The method was applied to find the values of the coefficient of friction in a friction-based texture algorithm that yield the same perception of roughness as the normal-force variations of conventional texture synthesis algorithms. Our main result is a table giving the perceptual equivalence between parameters having different physical dimensions. A similar method could be applied to other perceptual dimensions provided that the controlling parameter be monotonically related to a subjective estimate.

Published in:

IEEE Transactions on Haptics  (Volume:2 ,  Issue: 2 )