By Topic

Energy-Efficient Wake-Up Scheduling for Data Collection and Aggregation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanwei Wu ; Dept. of Comput. Sci., Minnesota State Univ., Mankato, MN, USA ; Xiang-Yang Li ; YunHao Liu ; Wei Lou

A sensor in wireless sensor networks (WSNs) periodically produces data as it monitors its vicinity. The basic operation in such a network is the systematic gathering (with or without in-network aggregation) and transmitting of sensed data to a base station for further processing. A key challenging question in WSNs is to schedule nodes' activities to reduce energy consumption. In this paper, we focus on designing energy-efficient protocols for low-data-rate WSNs, where sensors consume different energy in different radio states (transmitting, receiving, listening, sleeping, and being idle) and also consume energy for state transition. We use TDMA as the MAC layer protocol and schedule the sensor nodes with consecutive time slots at different radio states while reducing the number of state transitions. We prove that the energy consumption by our scheduling for homogeneous network is at most twice of the optimum and the timespan of our scheduling is at most a constant times of the optimum. The energy consumption by our scheduling for heterogeneous network is at most ?? (log Rmax/Rmin) times of the optimum. We also propose effective algorithms to construct data gathering tree such that the energy consumption and the network throughput is within a constant factor of the optimum. Extensive simulation studies show that our algorithms do considerably reduce energy consumption.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 2 )