By Topic

Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
James, T. ; Dept. of Bus. Inf. Technol., Virginia Polytech. Inst. & State Univ., Blacksburg, VA ; Rego, C. ; Glover, F.

The quadratic assignment problem (QAP) is a well-known combinatorial optimization problem with a wide variety of applications, prominently including the facility location problem. The acknowledged difficulty of the QAP has made it the focus of many metaheuristic solution approaches. In this paper, we show the benefit of utilizing strategic diversification within the tabu search (TS) framework for the QAP, by incorporating several diversification and multistart TS variants. Computational results for an extensive and challenging set of QAP benchmark test problems demonstrate the ability of our TS variants to improve on a classic TS approach that is one of the principal and most extensively used methods for the QAP. We also show that our new procedures are highly competitive with the best recently introduced methods from the literature, including more complex hybrid approaches that incorporate the classic TS method as a subroutine.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 3 )