By Topic

Protein Superfamily Classification Using Fuzzy Rule-Based Classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eghbal G. Mansoori ; Dept. of Comput. Sci. & Eng., Shiraz Univ., Shiraz ; Mansoor J. Zolghadri ; Seraj D. Katebi

In this paper, we have proposed a fuzzy rule-based classifier for assigning amino acid sequences into different superfamilies of proteins. While the most popular methods for protein classification rely on sequence alignment, our approach is alignment-free and so more human readable. It accounts for the distribution of contiguous patterns of n amino acids ( n-grams) in the sequences as features, alike other alignment-independent methods. Our approach, first extracts a plenty of features from a set of training sequences, then selects only some best of them, using a proposed feature ranking method. Thereafter, using these features, a novel steady-state genetic algorithm for extracting fuzzy classification rules from data is used to generate a compact set of interpretable fuzzy rules. The generated rules are simple and human understandable. So, the biologists can utilize them, for classification purposes, or incorporate their expertise to interpret or even modify them. To evaluate the performance of our fuzzy rule-based classifier, we have compared it with the conventional nonfuzzy C4.5 algorithm, beside some other fuzzy classifiers. This comparative study is conducted through classifying the protein sequences of five superfamily classes, downloaded from a public domain database. The obtained results show that the generated fuzzy rules are more interpretable, with acceptable improvement in the classification accuracy.

Published in:

IEEE Transactions on NanoBioscience  (Volume:8 ,  Issue: 1 )