By Topic

On the Way to Zero Defect of Plastic-Encapsulated Electronic Power Devices—Part III: Chip Coating, Passivation, and Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Alpern, P. ; Infineon Technol. AG, Neubiberg ; Nelle, P. ; Barti, E. ; Gunther, H.
more authors

Concerning thermomechanically induced failures such as metal-line deformation and passivation cracks, there is a practicable way to achieve the zero-defect limit of plastic-encapsulated power devices. This limit can be reached by, first, evaluating the influence of the major components involved and, consequently, by selecting the appropriate materials and measures, and, second, by always keping in mind the interdependence between all components, i.e., chip and package have to be regarded as an entity. An important finding was that applying simply one improvement step will not necessarily lead to the desired goal. Only the implementation of all improvement steps considering their interdependence is the key for the perfect overall system chip and package. In Part III of this series of papers, the influence of passivation and die coating materials on thermomechanical damage is investigated. Finally, it is shown that an intelligent chip design, in combination with a stiff Al multilayer, a low-stress molding compound (low coefficient of thermal expansion and high Young's modulus), a new passivation material, and an appropriate polyimide layer, may reduce the thermomechanical damage to zero, even for electronic power devices..

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:9 ,  Issue: 2 )