By Topic

Adaptive Reduced-Rank Processing Based on Joint and Iterative Interpolation, Decimation, and Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Lamare, R.C. ; Univ. of York, York ; Sampaio-Neto, R.

We present an adaptive reduced-rank signal processing technique for performing dimensionality reduction in general adaptive filtering problems. The proposed method is based on the concept of joint and iterative interpolation, decimation and filtering. We describe an iterative least squares (LS) procedure to jointly optimize the interpolation, decimation and filtering tasks for reduced-rank adaptive filtering. In order to design the decimation unit, we present the optimal decimation scheme and also propose low-complexity decimation structures. We then develop low-complexity least-mean squares (LMS) and recursive least squares (RLS) algorithms for the proposed scheme along with automatic rank and branch adaptation techniques. An analysis of the convergence properties and issues of the proposed algorithms is carried out and the key features of the optimization problem such as the existence of multiple solutions are discussed. We consider the application of the proposed algorithms to interference suppression in code-division multiple-access (CDMA) systems. Simulations results show that the proposed algorithms outperform the best known reduced-rank schemes with lower complexity.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 7 )