By Topic

A New Concept of Open {\rm TE}_{011} Cavity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Annino, G. ; Ist. per i Processi Chimico Fisici, Consiglio Naz. delle Ric., Pisa ; Cassettari, M. ; Martinelli, M.

The confinement properties of the open structure formed crossing a circular waveguide perpendicular to a parallel-plate waveguide are discussed, highlighting the fundamental differences with respect to the common high-frequency resonators. The structure supports a TE011 mode that appears suited for millimeter- and submillimeter-wave applications. The experimental characterization of this mode in a configuration resonating at 281 GHz is described in detail. The observed resonance exhibits state-of-the-art performances. The properties of the TE011 mode are studied in terms of the geometry, calculating the mode chart and the related quality factor and power-to-field conversion efficiency. The mode chart is then determined for configurations including a sample holder, where one of the waveguides is filled with a low-loss dielectric material. In addition to excellent merit figures, the TE011 mode shows a relevant stability with respect to the geometrical imperfections and to the insertion of a sample holder. The obtained results demonstrate that the proposed single-mode resonator competes with the standard cavities in terms of performances, versatility, and simplicity.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 4 )