Cart (Loading....) | Create Account
Close category search window
 

Contrast enhancement and phase-sensitive boundary detection in ultrasonic speckle using bessel spatial filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shankar, P.M. ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA

Speckle in ultrasonic image systems adversely impacts the contrast and resolution in the image. This poses serious problems in the interpretation of B mode images of internal organs such as breast, liver, kidney and so on. In the absence of sufficient contrast, classifying the regions of interest into benign and malignant masses becomes error prone. Since some of the masses are uniquely identified in terms of the boundaries, poor contrast and resolution will result in difficulties with their identification. A new class of spatial filters based on cylindrical Bessel functions of the first kind is proposed for speckle reduction. These filters with complex impulse responses were explored for enhancing the contrast of speckled images. Hypothesising that the phase of the filtered image carries boundary information, the phase characteristics of four speckled images are also studied for detecting boundaries. Results indicate that these filters do improve the contrast and enhance the boundaries. It is shown that the phase map clearly indicates the existence of boundaries. A simple thresholding applied to the phase highlights the boundaries. The results show the strength of the Bessel spatial filters in improving contrast and highlighting boundaries without resorting to any additional edge-detection algorithms.

Published in:

Image Processing, IET  (Volume:3 ,  Issue: 2 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.