By Topic

Control Strategy for Battery-Ultracapacitor Hybrid Energy Storage System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garcia, F.S. ; Univ. of Campinas, Campinas ; Ferreira, A.A. ; Pomilio, J.A.

Hybrid energy storage systems have been investigated with the objective of improving the storage of electrical energy. In these systems, two (or more) energy sources work together to create a superior device in comparison with a single source. In particular, batteries and ultracapacitors have complementary characteristics that make them attractive for a hybrid energy storage system. But the result of this combination is fundamentally related to how the sources are interconnect and controlled. The present work reviews the advantages of battery-ultracapacitor hybridization, some existing solutions to coordinate the power flow, and proposes a new control strategy, designed for the improvement of performance and energy efficiency, while also extending the battery life. The control strategy uses classical controllers and provides good results with low computational cost. Experimental results are presented.

Published in:

Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE

Date of Conference:

15-19 Feb. 2009