By Topic

Simulation and Analysis of 3-D Magnetic Flux Leakage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dutta, S.M. ; Dept. of Mech. Eng. & Mater. Sci., Rice Univ., Houston, TX ; Ghorbel, F.H. ; Stanley, R.K.

In this paper, we present simulation results and analysis of 3-D magnetic flux leakage (MFL) signals due to the occurrence of a surface-breaking defect in a ferromagnetic specimen. The simulations and analysis are based on a magnetic dipole-based analytical model, presented in a previous paper. We exploit the tractability of the model and its amenability to simulation to analyze properties of the model as well as of the MFL fields it predicts, such as scale-invariance, effect of lift-off and defect shape, the utility of the tangential MFL component, and the sensitivity of MFL fields to parameters. The simulations and analysis show that the tangential MFL component is indeed a potentially critical part of MFL testing. It is also shown that the MFL field of a defect varies drastically with lift-off. We also exploit the model to develop a lift-off compensation technique which enables the prediction of the size of the defect for a range of lift-off values.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 4 )