By Topic

Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Slavin, Andrei ; Dept. of Phys., Oakland Univ., Rochester, MI ; Tiberkevich, Vasil

This paper formulates a general analytic approach to the theory of microwave generation in magnetic nano-structures driven by spin-polarized current and reviews analytic results obtained in this theory. The proposed approach is based on the universal model of an auto-oscillator with negative damping and nonlinear frequency shift. It is demonstrated that this universal model, when applied to the case of a spin-torque oscillator (STO) based on a current-driven magnetic nano-pillar or nano-contact, gives adequate description of most of the experimentally observed properties of STO. In particular, the model describes the power and frequency of the generated microwave signal as functions of the bias current and magnetic field, predicts the magnitude and properties of the generation linewidth, and explains the STO behavior under the influence of periodic and stochastic external signals: frequency modulation, phase-locking to external signals, mutual phase-locking in an array of STO, broadening of the generation linewidth near the generation threshold, etc. The proposed nonlinear auto-oscillator theory is rather general and can be used not only for the development of practical nano-sized STO, but, also, for the description of nonlinear auto-oscillating systems of any physical nature.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 4 )