By Topic

Constacyclic Codes of Length 2^s Over Galois Extension Rings of {BBF}_{2}+u{BBF}_2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hai Q. Dinh ; Dept. of Math. Sci., Kent State Univ., Warren, OH

We study all constacyclic codes of length 2s over GR(Rfr,m), the Galois extension ring of dimension m of the ring Rfr=F2+uF2. The units of the ring GR(Rfr,m) are of the forms alpha, and alpha+ubeta, where alpha, beta are nonzero elements of F2m, which correspond to 2 m(2m-1) such constacyclic codes. First, the structure and Hamming distances of (1+ugamma)-constacyclic codes are established. We then classify all cyclic codes of length 2s over GR(Rfr,m), and obtain a formula for the number of those cyclic codes, as well as the number of codewords in each code. Finally, one-to-one correspondences between cyclic and alpha-constacyclic codes, as well as (1+ugamma)-constacyclic and (alpha+ubeta) -constacyclic codes are provided via ring isomorphisms, that allow us to carry over the results about cyclic and (1+ugamma)-constacyclic accordingly to all constacyclic codes of length 2s over GR(Rfr,m).

Published in:

IEEE Transactions on Information Theory  (Volume:55 ,  Issue: 4 )