Cart (Loading....) | Create Account
Close category search window
 

Harmonic-Balance Algorithms for the Circuit-Level Nonlinear Analysis of UWB Receivers in the Presence of Interfering Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rizzoli, V. ; Dept. of Electron., Comput. Sci. & Syst., Univ. of Bologna, Bologna ; Mastri, F. ; Costanzo, A. ; Masotti, Diego

This paper demonstrates, for the first time, a circuit-level approach to the analysis of pulse-ultrawideband (UWB) receiver front ends in the presence of interfering communication signals. The procedure is based on a model-order-reduction harmonic-balance technique based on Krylov subspaces. A sophisticated algorithm for performing matrix-vector multiplications has been particularly devised to handle signal spectra including very large numbers of arbitrarily spaced lines with very high numerical efficiency. The resulting simulation tool allows rigorous computation of interference effects on the nonlinear regime of UWB receivers and accurate circuit-level prediction of receiver sensitivity and channel capacitance. Simplifying assumptions typical of system-level approaches are overcome in this way, while keeping computational time at acceptable levels.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.