By Topic

Ranging With Ultrawide Bandwidth Signals in Multipath Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dardari, D. ; Dipt. di Elettron., Univ. of Bologna at Cesena, Cesena ; Conti, A. ; Ferner, U. ; Giorgetti, A.
more authors

Over the coming decades, high-definition situationally-aware networks have the potential to create revolutionary applications in the social, scientific, commercial, and military sectors. Ultrawide bandwidth (UWB) technology is a viable candidate for enabling accurate localization capabilities through time-of-arrival (TOA)-based ranging techniques. These techniques exploit the fine delay resolution property of UWB signals by estimating the TOA of the first signal path. Exploiting the full capabilities of UWB TOA estimation can be challenging, especially when operating in harsh propagation environments, since the direct path may not exist or it may not be the strongest. In this paper, we first give an overview of ranging techniques together with the primary sources of TOA error (including propagation effects, clock drift, and interference). We then describe fundamental TOA bounds (such as the Cramer-Rao bound and the tighter Ziv-Zakai bound) in both ideal and multipath environments. These bounds serve as useful benchmarks in assessing the performance of TOA estimation techniques. We also explore practical low-complexity TOA estimation techniques and analyze their performance in the presence of multipath and interference using IEEE 802.15.4a channel models as well as experimental data measured in indoor residential environments.

Published in:

Proceedings of the IEEE  (Volume:97 ,  Issue: 2 )