Cart (Loading....) | Create Account
Close category search window

High resolution Deep Level Transient Spectroscopy of p-n diodes formed from p-type polycrystalline diamond on n-type silicon.

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vernon-Parry, K.D. ; Mater. & Eng. Res. Inst., Sheffield Hallam Univ., Sheffield ; Evans-Freeman, J.H. ; Mitromara, N. ; May, P.W.

High resolution Laplace deep level transient spectroscopy (LDLTS) at temperatures up to 450 K has been applied to thin polycrystalline semiconducting diamond films deposited on n-type silicon. Such structures form p-n diodes and can be characterised by capacitance DLTS. The boron doped diamond films were grown by hot filament chemical vapour deposition and the diamond film thickness was 3-4 microns. The boron concentration in the diamond films ranged from 7times1018 cm-3 to 1times1019 cm-3. In the LDLTS an isothermal measurement of thousands of capacitance transients was made and then averaged, and the result was inverse transformed to find the trap emission rate. The temperature was chosen as the maximum of the conventional DLTS emission peak. Conventional DLTS showed a combination of majority and minority carrier emission from deep levels. Multiple peaks in the LDLTS spectra suggest that some of the defects are located in a strain field. Capture cross section measurements also show that these peaks exhibit a time dependent capture cross section, which is indicative of carriers being trapped at a large electrically active defect. It is shown in the paper that a combination of LDLTS and direct capture cross section measurements can be applied to semiconducting diamond and can be used to understand whether defects possess single or multiple energy levels, and whether the trapping is at an isolated point defect or in defects in the strain field of an extended defect.

Published in:

Optoelectronic and Microelectronic Materials and Devices, 2008. COMMAD 2008. Conference on

Date of Conference:

July 28 2008-Aug. 1 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.