By Topic

Numerical Modeling for the Underfill Flow in Flip-Chip Packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. W. Wan ; Coll. of Civil Eng., Guangzhou Univ., Guangzhou, China ; W. J. Zhang ; D. J. Bergstrom

In the prediction of underfill flow in a flip-chip package, numerical methods are usually used for flow analysis and simulation since analytical methods cannot meet the requirement for predicting fluid distribution in a planar analysis. At present, there appears to be no simulation software commercially available that is able to provide adequate prediction for the underfill flow process driven by capillary force in a micro-cavity situation. In the study presented in this paper, a numerical model was proposed for the prediction of flip-chip underfill flow. In this model, the power-law constitutive equation was used to describe the non-Newtonian behavior of encapsulant fluids and a time-dependent velocity boundary condition was used instead of the pressure boundary condition commonly used. The comparison between the model-predicted and experimental results indicated that this model can give a good prediction for the underfill flow in a micro-cavity. This model was implemented by a general-purpose commercially available software program ANSYS, which has a high reliability and wide accessibility.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:32 ,  Issue: 2 )