Cart (Loading....) | Create Account
Close category search window
 

Dimensionality Reduction of Hyperspectral Data via Spectral Feature Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mojaradi, B. ; Fac. of Geodesy, K.N. Toosi Univ. of Technol., Tehran ; Abrishami-Moghaddam, H. ; Zoej, M.J.V. ; Duin, R.P.W.

This paper proposes an innovative spectral feature extraction (SFE) method called prototype space (PS) feature extraction (PSFE) based only on class spectra. The main novelties of the proposed SFE lie in the following: representing channels in a new space called PS, where they are characterized in terms of reflection properties of classes; and proposing uncertainty, angle, and distance measures to distinguish highly correlated and informative channels. Having clustered the channels by Fuzzy C-Means (FCM) in PS, highly correlated and isolated channels are separated by an uncertainty measure. Consequently, PSFE is built by a linear combination of spectra weighted by class membership values of channels that fall in each cluster. Furthermore, we will enrich PSFE with informative channels which are outlier channels identified through their angle and distance with respect to diagonal and cluster centers in PS. In contrast to the previous SFE methods, PSFE substitutes the search strategies with FCM clustering to find relevant channels. Moreover, instead of optimizing separability criteria, the accuracy of classification over a subset of training data is used to decide which disjoint optical region yields maximum accuracy. According to how class spectra are obtained, PSFE incorporates four approaches: knowledge based, supervised, semisupervised, and unsupervised. The latter three PSFE approaches are assessed in two main cases including with and without informative channels and compared with the conventional feature extraction methods. Experimental results demonstrated higher overall accuracy of PSFE compared to its conventional counterparts with limited sample sizes.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.