Cart (Loading....) | Create Account
Close category search window
 

Rough Sets and Near Sets in Medical Imaging: A Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
ella Hassanien, A. ; Inf. Technol. Dept., Cairo Univ., Cairo, Egypt ; Abraham, A. ; Peters, J.F. ; Schaefer, G.
more authors

This paper presents a review of the current literature on rough-set- and near-set-based approaches to solving various problems in medical imaging such as medical image segmentation, object extraction, and image classification. Rough set frameworks hybridized with other computational intelligence technologies that include neural networks, particle swarm optimization, support vector machines, and fuzzy sets are also presented. In addition, a brief introduction to near sets and near images with an application to MRI images is given. Near sets offer a generalization of traditional rough set theory and a promising approach to solving the medical image correspondence problem as well as an approach to classifying perceptual objects by means of features in solving medical imaging problems. Other generalizations of rough sets such as neighborhood systems, shadowed sets, and tolerance spaces are also briefly considered in solving a variety of medical imaging problems. Challenges to be addressed and future directions of research are identified and an extensive bibliography is also included.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 6 )

Date of Publication:

Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.