Cart (Loading....) | Create Account
Close category search window
 

Design of Reconfigurable and Robust Integrated SC Power Converter for Self-Powered Energy-Efficient Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chowdhury, I. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Dongsheng Ma

Motivated by emerging self-sustained low-power applications, an integrated power supply solution with a reconfigurable step-up/down switched-capacitor power stage and a dual-loop adaptive gain-pulse control is presented. It makes use of a reconfigurable power stage structure to implement variable gain ratios that provide efficient voltage conversion within wide input/output voltage and power ranges. It also employs an interleaving regulation scheme to significantly reduce the input inrush currents and the output voltage ripples with fast transient response. Design strategy, system optimization, and circuit implementation are addressed in detail. The converter was designed with a standard 0.35-mum digital CMOS n-well process. With an input voltage ranging from 1.5 to 3.3 V, the converter achieves variable step-up/down voltage conversion with a maximum load current of 90 mA. The maximum efficiency is 88%. The converter responds to a 70-mA load-current step change within 4.6 mus, while it robustly operates under a 1.8-V input supply variation. The design can be easily extended and reconfigured for different operation and application scenarios.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.