By Topic

Small-Signal Model-Based Control Strategy for Balancing Individual DC Capacitor Voltages in Cascade Multilevel Inverter-Based STATCOM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yu Liu ; Dept. of Electr. Eng., North Carolina State Univ., Raleigh, NC ; Alex Q. Huang ; Wenchao Song ; Subhashish Bhattacharya
more authors

This paper presents a new feedback control strategy for balancing individual DC capacitor voltages in a three-phase cascade multilevel inverter-based static synchronous compensator. The design of the control strategy is based on the detailed small-signal model. The key part of the proposed controller is a compensator to cancel the variation parts in the model. The controller can balance individual DC capacitor voltages when H-bridges run with different switching patterns and have parameter variations. It has two advantages: 1) the controller can work well in all operation modes (the capacitive mode, the inductive mode, and the standby mode) and 2) the impact of the individual DC voltage controller on the voltage quality is small. Simulation results and experimental results verify the performance of the controller.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:56 ,  Issue: 6 )